м. Хмельницький вул. Кам'янецька 76 Центр, Філармонія

mobile phone 096-660-95-69 mobile phone 097-919-78-55 mobile phone 067-787-00-50 office phone 0382-65-40-65

ЭФФЕКТИВНОСТЬ ИЗМЕРЕНИЙ ОБЪЁМОВ ОРБИТ ПРИ ТРАВМАТИЧЕСКИХ ПОВРЕЖДЕНИЯХ СРЕДНЕЙ ЗОНЫ ЛИЦА ПО ДАННЫМ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ

https://xn----ttbeqkc.xn--j1amh/kt/kt-golovi/kt-orbit

THE EFFECTIVENESS OF ORBITAL VOLUMES CALCULATIONS AFTER TRAUMATIC
INJURIES BASED ON CT DATA
Davydov D.V.1, Serova N.S.2, Pavlova O.Yu.2
o present a case of a 56 y.o. male with maxillo-facial trauma after falling from
heights and the possibility to choice the treatment tactics based on CT volume
calculation.
Material and methods. Patient N., 56 years old, came to the clinic 3 days after
the injury – a fall from heights. During the examination in the clinic, the patient did not
have visual impairments and difficulties in eye movement. We performed MSCT of the
maxillofacial region, which revealed radiological signs of fractures of the lower and lateral
walls of the right orbit. In order to determine further treatment tactics for this patient (surgical treatment or conservative therapy), the authors performed additional processing of
MSCT data in order to obtain clarifying diagnostic information.
Results. The authors performed the calculation of orbital volumes and confirmed the
possible minimal risk of post-traumatic complications such as enophthalmos and hypophthalmos. It was decided to treat the patient conservatively. The long-term follow-up
MSCT study confirmed the correct management of a patient with orbital trauma in terms
of restoration of the right orbit walls with minimal volumetric change.
Conclusion. This case highlights the advantage of using new techniques of CT data
processing in daily practice.
Keywords: MSCT, CT data postprocessing, enophthalmos, orbital volume.
Corresponding author: Pavlova O.Yu., email: dr.olgapavlova@gmail.com
For citation: Davydov D.V., Serova N.S., Pavlova O.Yu. The effectiveness of orbital volumes calculations after traumatic injuries based on СT data. REJR 2021; 11(1):206-212.
DOI:10.21569/2222-7415-2021-11-1-206-212.
Received: 28.12.20 Accepted: 11.03.21
ЭФФЕКТИВНОСТЬ ИЗМЕРЕНИЙ ОБЪЁМОВ ОРБИТ ПРИ ТРАВМАТИЧЕСКИХ
ПОВРЕЖДЕНИЯХ СРЕДНЕЙ ЗОНЫ ЛИЦА ПО ДАННЫМ
КОМПЬЮТЕРНОЙ ТОМОГРАФИИ
Давыдов Д.В.1, Серова Н.С.2, Павлова О.Ю.2
редставить клиническое наблюдение пациента 56 лет, получившего травму
после падения с высоты, и определить возможность выбора тактики лечения пациента на основе КТ-расчётов объёмов орбит.
Материалы и методы. Пациент Н., 56 лет, обратился в клинику через 3 суток
после травмы – падения с высоты. При обследовании в клинике у пациента не наблюдалось нарушений зрения и затруднения движения глазного яблока. Нами была выполнена МСКТ челюстно-лицевой области, на которой были выявлены рентгенологические признаки переломов нижней и наружной стенок правой орбиты. С целью определения дальнейшей тактики лечения этого пациента (оперативное лечение или консервативная терапия) авторами была выполнена дополнительная обработка данных
МСКТ с целью получения уточняющей диагностической информации.
Результаты. Авторы выполнили расчет орбитальных объемов и подтвердили
возможный минимальный риск посттравматических осложнений, таких как энофтальм и гипофтальм. Было принято решение провести консервативное лечение пациT
П
СЛУЧАЙ ИЗ ПРАКТИКИ

 

1 - The Peoples'
Friendship University
of Russia.
2 - I.M. Sechenov
First Moscow State
Medical University
(Sechenov
University).
Moscow, Russia.
1 - ФГАОУ ВО
«Российский
университет дружбы
народов» (РУДН).
2 - ФГАОУ ВО Первый
МГМУ им. И.М. Сеченова Минздрава России (Сеченовский
Университет).
Москва, Россия.
 RUSSIAN ELECTRONIC JOURNAL OF RADIOLOGY
| www.rejr.ru | REJR. 2021; 11 (1):206-212 DOI: 10.21569/2222-7415-2021-11-1-206-212 Страница 207
ента. Выполнение МСКТ исследования в отдаленном периоде наблюдения подтвердило
верную тактику ведения пациента с травмой орбиты в вопросе восстановления стенок
правой орбиты с ее минимальным объемным изменением.
Выводы. Данный клинический случай подчеркивает преимущество использования новых методов обработки данных компьютерной томографии в повседневной
клинической практике.
Ключевые слова: МСКТ, обработка КТ данных, энофтальм, объемы орбиты.
Контактный автор: Павлова О.Ю., email: dr.olgapavlova@gmail.com
Для цитирования: Давыдов Д.В., Серова Н.С., Павлова О.Ю. Эффективность измерений объёмов орбит при травматических повреждениях средней зоны лица по
данным компьютерной томографии. REJR 2021; 11(1):206-212. DOI:10.21569/2222-
7415-2021-11-1-206-212.
Статья получена: 28.12.20 Статья принята: 11.03.21
ntroduction.
Nowadays the problem of orbital trauma is
still relevant worldwide [1, 2, 4]. Levels of
domestic violence during the COVID-19
pandemic increased globally, in some cases,
leading to maxilla-facial trauma [3]. Since orbital
trauma frequently results in persistent aesthetic
and functional impairment, the correct diagnosis
is essential for precise preoperative planning [2, 4,
6]. At the same time current diagnostics must be
as objective as possible in order to avoid unnecessary surgical treatment and possible postoperative
complications [2, 4, 6].
MSCT is a well-known standard for orbital
trauma visualization [2, 4]. However, there is still
a possibility of subjective assessment and misinterpretation of CT data with a “naked eye”. Therefore, it is critically important to use new techniques of CT data processing in daily practice to
be able to get precise information about patient’s
condition.
Case presentation.
Patient N, male, 56 years old, was presented
to the maxilla-facial hospital of Sechenov University after falling from the roof of the two-storey
building. The patient had complaints of face swelling and hematomas on the right side of the face.
During the clinical examination, changed facial
configuration and increased right paraorbital area
due to soft tissue edema was deter-mined, as well
as skin abrasions, hematomas in the upper and
lower eyelids, narrowing of the right ocular gap,
numbness of the infraorbital region (Fig. 1). He
had no visual or orbital movement impairment.
The patient underwent skull CT which revealed fractures of the right zigomatico-orbital
complex including inferior orbital wall (Fig. 2).
Patient’s condition was consulted with 3
maxillo-facial surgeons about further treatment
tactic. One of them was planning to operate on
him using inferior orbital wall prosthetic and metallic osteosyntesis in the midface, the other two
surgeons were unsure about the necessity of surgical treatment and recommended dynamic followup.
In order to get additional diagnostic information and objectify the assessment of CT data,
I
Fig. 1 (Рис. 1)
Fig. 1. Photo.
View of the patient N. 48 hours after the trauma (the
agreement of the patient and the ethics committee for
the photo was obtained).
Рис. 1. Фото.
Внешний вид пациента Н. через 48 часов после
травмы (согласие пациента и этического комитета
на фотографию получены). 
 RUSSIAN ELECTRONIC JOURNAL OF RADIOLOGY
| www.rejr.ru | REJR. 2021; 11 (1):206-212 DOI: 10.21569/2222-7415-2021-11-1-206-212 Страница 208
we performed measurements of orbital volumes.
For measurement of orbital volumes the bone
borders of the orbits were marked on every axial
slice using an “ellipse” toll on the workstation.
Measurement results (in ml) of healthy and traumatized orbits were compared.
It is known that if the difference between
volumes of injured and healthy orbits exceeds 2
ml, the globe can be displaced inferiorly by 1 mm,
and therefore the risk of posttraumatic enophthalmos increases.
The difference between the volumes of injured and healthy orbits in the Patient N. was 0,4
ml, which is less than the critical point and suggested minimal risk of developing posttraumatic
enophthalmos (Fig. 3).
Considering clinical presentation, absence of
visual and functional impairment and results of
CT including orbital volumes measurement, it was
decided to treat patient symptomatically with follow-up.
As a part of a dynamic control CT of the
midface was performed 2 years after the injury.
The obtained images showed restoration of the
right zygomatico-orbital complex with a small deformation of the inferior orbital wall (Fig. 4, 5).
Measurement of orbital volumes was performed as well in order to objectively estimate the
changes. The difference between the affected and
normal orbits in the late posttraumatic period was
0,67 ml which was still less than critical level (Fig.
6).
Considering the absence of any complaints
within 2 years, satisfactory clinical condition, restoration of midface bone structures and absence
of changes in orbital volumes, the choice of treatment tactic was acknowledge as successful.
Discussion.
Within the constant technical development,
today we emphases on CT images processing in
order to obtain objective diagnostic information.
The use of these techniques allows doctors to
choose the tactics of patient management, to plan
the surgery, which will improve the efficiency and
quality of treatment and rehabilitation of patients
with orbital trauma [4-6, 8-10].
Orbital volume measurements are highly
heterogeneous [6, 10]. The data obtained in recent
studies are more reliable due to more accurate
measurement and imaging techniques than in
previous decades. Attempts to accurately measure
the volumes of orbits have been made for a long
time, but the research results still have not yet
found wide application in clinical practice.
Among the wide range of orbital injury complications, two typical significant sequelae are
enophthalmos and hypoglobus, based on posttraumatic orbital volume expansion [2, 4, 7, 9-11].
Critical values for surgical reconstruction of the
orbit are considered to be the difference in position between the two eyeballs equal to 2 mm or
more as measured in the anteroposterior plane by
Hertel exophthalmometry [6-9].
Many studies show that the most reliable
results of orbital volume measurements are obtained using CT [5-9]. However, despite the technological progress, it is still difficult to identify patients at risk of developing enophthalmos with orbital trauma, since edema and hematoma of the
orbital soft tissues can hide enophthalmos up to 3
mm [10-13].
Many published studies in recent years have
Fig. 2 а (Рис. 2 а) Fig. 2 b (Рис. 2 б)
Fig. 2. MSCT, bone window.
а – coronal view, b – axial view. Coronal computed tomography image in early posttraumatic period, fracture in the
inferior orbital wall on the left, as well lateral orbital wall and maxillary sinus wall.
Рис. 2. МСКТ, режим костной плотности.
а – корональная проекция, б – аксиальная проекция. Визуализируются переломы нижней и латеральной стенок правой орбиты.
 RUSSIAN ELECTRONIC JOURNAL OF RADIOLOGY
| www.rejr.ru | REJR. 2021; 11 (1):206-212 DOI: 10.21569/2222-7415-2021-11-1-206-212 Страница 209
shown that an increase in orbital volume is directly correlated with the development and severity of
enophthalmos [13, 14].
Large sample studies are needed to validate
accurate mathematical measurements to prevent
early enophthalmos greater than 2 mm, which requires surgical reconstruction of the orbital walls.
To date and according to the results of published
works, surgical reconstruction of the orbits should
be indicated when the orbital wall defect is more
than 2 cm2, and when the orbital volume increases by more than 1.62 cm3 or more than 10-15%
[14, 16].
Many authors note that 3D assessment of
the volume of the prolapsing component, in addition to 2D assessment of the orbital wall defect,
may be necessary to determine the tactics of patient management and ensure an adequate surgical result [9-13, 15]. An analysis of the volume
calculations showed that an increase in orbital
volume of more than 5% can be considered sufficient for the appearance of clinically significant
enophthalmos [10, 16].
Authors agree that the linear and volumetric
characteristics of the bony orbit and its apex are
useful in determining the tactics of patient management and assessing the volume of surgical intervention [14, 15]. This orbital volume measurement can be performed on every CT workstation
with usual tools without any additional software
indicating the reproducibility of the procedure.
Wagner M. et al in 2016 in their study
showed that manual volume measurements as
well as atlas-based and model-based methods can
Fig. 3 а (Рис. 3 а) Fig. 3 b (Рис. 3 б)
Fig. 3. MSCT, orbital volumes calculations.
Coronal computed tomography image (а) and 3D model (b) in early posttraumatic period after calculating and
highlighting the orbital volumes.
Рис. 3. МСКТ, расчет объёмов орбит.
Изображения в корональной плоскости (а) и 3D-модель (б) в раннем посттравматическом периоде после расчета и выделения объемов орбит.
Fig. 4 (Рис. 4)
Fig. 4. Photo.
View of the patient N. two years after the trauma (the
agreement of the patient and the ethics committee for
the photo was obtained).
Рис. 4. Фото.
Внешний вид пациента Н. через два года после
травмы (согласие пациента и этического комитета
на фотографию получены).
 RUSSIAN ELECTRONIC JOURNAL OF RADIOLOGY
| www.rejr.ru | REJR. 2021; 11 (1):206-212 DOI: 10.21569/2222-7415-2021-11-1-206-212 Страница 210
accurately measure orbital volume [16, 17]. Although automatic methods seem to be more userfriendly and less time-consuming, that manual
volume measurements needed much less corrections and adjustments that is why it was used in
our case.
In the presented clinical example we are
showing the necessity of using CT data processing
in challenging patients. This technique allows to
get objective diagnostic information and to help
the clinicians to choose the treatment tactics.
Since the patients did not have any of screening
criteria for detecting severe ocular injuries [17]
and low risk of posttraumatic enophthalmos the
surgery was not indicated which resulted in satisfactory outcome confirmed by follow-up CT.
Conclusion. This case highlights the advantage of using new techniques of CT data proFig. 5 а (Рис. 5 а) Fig. 5 b (Рис. 5 б)
Fig. 5. MSCT, bone window.
a – coronal view, b – axial view. Coronal computed tomography image in late posttraumatic period, restoration of
the left inferior and lateral orbital walls and maxillary sinus walls with slight deformations.
Рис. 5. МСКТ, режим костной плотности.
а – корональная проекция, б – аксиальная проекция. Отмечается восстановление левой нижней и боковой
стенок правой орбиты с небольшой деформацией.
Fig. 6 а (Рис. 6 а) Fig. 6 b (Рис. 6 б)
Fig. 6. MSCT, orbital volumes calculations.
Coronal computed tomography image (а) and 3D model (b) in late posttraumatic period after calculating and highlighting the orbital volumes. .
Рис. 6. МСКТ, расчет объёмов орбит.
Изображения в корональной плоскости (a) и 3D-модель (б) в позднем посттравматическом периоде после расчета и выделения объемов орбит.
 RUSSIAN ELECTRONIC JOURNAL OF RADIOLOGY
| www.rejr.ru | REJR. 2021; 11 (1):206-212 DOI: 10.21569/2222-7415-2021-11-1-206-212 Страница 211
cessing in daily practice. As the result the additional diagnostic information about orbital volumes can be acquired in order to identify the risk
of postoperative enophthalmos and allow clinicians to choose correct treatment tactics.
The authors do not have any proprietary interests in the materials described in the article. All
coauthors have read, participated, and approved
the final constructed manuscript. The photos of
the patient were publishes with signed permission
of the patient.
Список литературы:
1. Road traffic injuries. Information N°358 (October 2015). Available at:
http://www.who.int/mediacentre/factsheets/fs358/ru/
2. Kubal W.S. Imaging of orbital trauma. RadioGraphics. 2008;
28: 1729–1739.
3. Whitehouse R.W., Batterbury M., Jackson A., Noble J.L. Prediction of enophthalmos by computed tomography after ‘blow
out’ orbital fracture. Br J Ophthalmol. 1994; 78: 618–20.
4. Павлова О.Ю., Серова Н.С. Многосрезовая компьютерная
томография в диагностике переломов глазниц. Вестник
рентгенологии и радиологии. 2015; 3: 12-17.
5. Kolk A., Pautke C., Schott V., Ventrella E., Wiener E., Ploder
O. Secondary post-traumatic enophthalmos: high-resolution
magnetic resonance imaging compared with multislice computed
tomography in postoperative orbital volume measurement. J
Oral Maxillofac Surg. 2007; 65: 1926–34.
6. Pavlova O. Yu., Serova N.S., Davydov D.V., Peric B. Orbital
volume assessment according to MSCT data in patients with
midface trauma. REJR. 2018; 8 (1): 29-39. DOI:10.21569/2222-
7415-2018-8-1-29-39
7. Nastri A.L., Gurney B. Current concepts in midface fracture
management. Curr Opin Otolaryngol Head Neck Surg. 2016; 24
(4): 368-75. doi: 10.1097/MOO.0000000000000267.
8. Давыдов Д.В., Павлова О.Ю., Серова Н.С. Новые методики анализа МСКТ-изображений у пациентов с посттравматическими дефектами и деформациями структур
средней зоны лица. Пластическая хирургия и эстетическая
медицина. 2020; 2: 46-52.
9. Furuta M. Measurement of Orbital Volume by Computed Tomography: Especially on the Growth of the Orbit. Jpn J Ophthalmol. 2001; 45: 600–606.
10. Ploder O., Klug C., Voracek M., Burggasser G., Czerny C.
Evaluation of computer-based area and volume measurement
from coronal computed tomography scans in isolated blowout
fractures of the orbital floor. J Oral Maxillofac Surg. 2002; 60:
1267–72.
11. Sidebottom A.J. The current management of midfacial trauma. Journal of oral biology and craniofacial research. 2013; 3: 1
2 0 e1 2 2.
12. Серова Н.С., Курешова Д.Н., Бабкова А.А., Басин Е.М.
Многосрезовая компьютерная томография в диагностике
токсических фосфорных некрозов челюстей.
Вестник рентгенологии и радиологии. 2015; 5: 11-16.
13. Essig H., Dressel L., Rana M., Rana M., Kokemueller H.,
Ruecker M., Gellrich N. Precision of posttraumatic primary orbital
reconstruction using individually bent titanium mesh with and
without navigation: a retrospective study. Head & Face
Medicine. 2013; 9: 18.
14. Павлова О.Ю., Серова Н.С. Протокол мультиспиральной ком-пьютерной томографии в диагностике травм
средней зоны лица. REJR. 2016; 6 (3): 48-53.
DOI:10.21569/2222-7415-2016-6-3-48-53.
15. Wagner M., Lichtenstein J., Winkelmann M., Shin H.,
Gellrich N., Essig H. Development and first clinical application of
automated virtual reconstruction of unilateral midface defects.
Journal of Cranio-Maxillo-Facial Surgery. 2015; 43: 1340e1347.
16. Raskin E.M., Millman A.L., Lubkin V., Rocca R.C., Lisman
R.D., Maher E.A. Prediction of late enophthalmos by volumetric
analysis of orbital fractures. Ophthal Plast Reconstr Surg. 1998;
14: 19–26.
17. Regensburg N.I., Kok P.H., Zonneveld F.W., Baldeschi L.,
Saeed P., Wiersinga W.M., Mourits M.P. A new and validated
CT-based method for the calculation of orbital soft tissue volumes. Invest Ophthalmol Vis Sci. 2008; 49 (5): 1758-62. doi:
10.1167/iovs.07-1030.
References:
1. Road traffic injuries. Information N°358 (October 2015). Available at:
http://www.who.int/mediacentre/factsheets/fs358/ru/
2. Kubal W.S. Imaging of orbital trauma. RadioGraphics. 2008;
28: 1729–1739.
3. Whitehouse R.W., Batterbury M., Jackson A., Noble J.L. Prediction of enophthalmos by computed tomography after ‘blow
out’ orbital fracture. Br J Ophthalmol. 1994; 78: 618–20.
4. Pavlova O.Yu., Serova N.S. Multislice computed tomography in
the diagnosis of orbital fractures. Bulletin of radiology and radiology. 2015; 3: 12-17 (in Russian).
5. Kolk A., Pautke C., Schott V., Ventrella E., Wiener E., Ploder
O. Secondary post-traumatic enophthalmos: high-resolution
magnetic resonance imaging compared with multislice computed
tomography in postoperative orbital volume measurement. J
Oral Maxillofac Surg. 2007; 65: 1926–34.
6. Pavlova O. Yu., Serova N.S., Davydov D.V., Peric B. Orbital
volume assessment according to MSCT data in patients with
midface trauma. REJR. 2018; 8 (1): 29-39. DOI:10.21569/2222-
7415-2018-8-1-29-39.
7. Nastri A.L., Gurney B. Current concepts in midface fracture
management. Curr Opin Otolaryngol Head Neck Surg. 2016; 24
(4): 368-75. doi: 10.1097/MOO.0000000000000267.
8. Davydov D.V., Pavlova O.Yu., Serova N.S. New methods for
the analysis of MSCT images in patients with post-traumatic
defects and deformities of the structures of the midface zone.
Plastic surgery and aesthetic medicine. 2020; 2: 46-52 (in Russian).
9. Furuta M. Measurement of Orbital Volume by Computed Tomography: Especially on the Growth of the Orbit. Jpn J Ophthalmol. 2001; 45: 600–606.
10. Ploder O., Klug C., Voracek M., Burggasser G., Czerny C.
Evaluation of computer-based area and volume measurement
from coronal computed tomography scans in isolated blowout 
 RUSSIAN ELECTRONIC JOURNAL OF RADIOLOGY
| www.rejr.ru | REJR. 2021; 11 (1):206-212 DOI: 10.21569/2222-7415-2021-11-1-206-212 Страница 212
fractures of the orbital floor. J Oral Maxillofac Surg. 2002; 60:
1267–72.
11. Sidebottom A.J. The current management of midfacial trauma. Journal of oral biology and craniofacial research. 2013; 3: 1
2 0 e1 2 2.
12. Serova N.S., Kureshova D.N., Babkova A.A., Basin E.M. Multi-slice computed tomography in the diagnosis of toxic phosphorus necrosis of the jaws.
Journal of radiology. 2015; 5: 11-16 (in Russian).
13. Essig H., Dressel L., Rana M., Rana M., Kokemueller H.,
Ruecker M., Gellrich N. Precision of posttraumatic primary orbital
reconstruction using individually bent titanium mesh with and
without navigation: a retrospective study. Head & Face Medicine. 2013; 9: 18.
14. Pavlova O.Yu, Serova N.S. MSCT protocol in midface trauma
diagnostics. REJR. 2016; 6 (3): 48-53. DOI:10.21569/2222-
7415-2016-6-3-48-53 (in Russian).
15. Wagner M., Lichtenstein J., Winkelmann M., Shin H.,
Gellrich N., Essig H. Development and first clinical application of
automated virtual reconstruction of unilateral midface defects.
Journal of Cranio-Maxillo-Facial Surgery. 2015; 43: 1340e1347.
16. Raskin E.M., Millman A.L., Lubkin V., Rocca R.C., Lisman
R.D., Maher E.A. Prediction of late enophthalmos by volumetric
analysis of orbital fractures. Ophthal Plast Reconstr Surg. 1998;
14: 19–26.
17. Regensburg N.I., Kok P.H., Zonneveld F.W., Baldeschi L.,
Saeed P., Wiersinga W.M., Mourits M.P. A new and validated
CT-based method for the calculation of orbital soft tissue volumes. Invest Ophthalmol Vis Sci. 2008; 49 (5): 1758-62. doi:
10.1167/iovs.07-1030.